

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.4, No.2, pp 479-483, April-June 2012

Synthesis, characterization and biological importance of aminocyanopyridines

Purushothaman. M^{1*} , Loganathan. K^{1} and Sithick Ali. K^{2}

¹PG and Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, ²Department of Chemistry, Shivani Institute of Technology, Tiruchirappalli, Tamil Nadu, India.

*Corres. Author : purush.alpha@gmail.com

Abstract: Synthesis of 4, 6–bis[2'-amino-3'-cyano-4'-(substituted phenyl)-6'-pyridyl] resorcinol derivatives were achieved from the mixture of bichalcones, malononitrile and ammonium acetate following Knoevenagel reaction and Michael addition. The structures of the synthesized compounds were characterized by IR, ¹HNMR, ¹³CNMR, mass spectral data and elemental analysis. The compounds (III_{a-h}) were screened for their *in vitro* activity against *Psedomonas, Bacillus sp., Streptococcus, Staphylococcus, E.coli, C.albicans, and A.niger.* All the compounds were found to possess significant activities against the bacteria and fungi chosen at optimum concentration. The antifeedant activity of the compounds IIIb, IIIe and IIIg has been found to possess very high. Keywords: Bichalcones, malononitrile, aminocyanopyridines, antimicrobial, antifeedant activity.

Introduction

Pyridine derivatives have occupied a unique position in the field of medicinal chemistry. Many naturally occurring compounds having pyridine moiety show interesting biological and pharmacological activities. Pyridine derivatives have been used as herbicides¹, for enrichment of cereals², for regulation of arterial pressure³ and cholesterol levels in blood⁴. Some of them constitute an important class of antitumor compounds^{5, 6}. 2-Amino-3-cyanopyridines have been identified to possess antibacterial⁷, antimicrobial^{8, 9}, analgesic¹². antifungal¹⁰, cardiotonic¹¹, antiinflammatory¹³ and anti lung cancer¹⁴ activities. They have also been found to be selective IKK - β serine - threonine protein kinase inhibitors¹⁵. Recently, many synthetic methods have been used for the preparation of 2-amino-3-cyano pyridine derivatives¹⁶⁻ ¹⁸. This prompted us to synthesise a series of 4, 6-bis

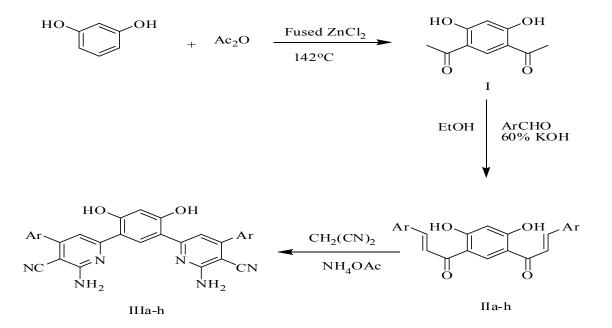
[2'-amino-3'-cyano-4'-(substituted phenyl)- 6'- pyridyl] resorcinol (III_{a-h}) starting from 4,6-diacetylresocinol.

Experimental

All the chemicals used were purchased from Merck AnalaR Grade and purified wherever necessary following the standard methods. The purity of the compounds was checked by TLC using silica gel G plates. Melting points were recorded in open capillary tubes and were uncorrected. FT-IR spectra were recorded on Perkin Elmer spectrometer using KBr pellets. ¹H-NMR and ¹³C-NMR spectra were taken in DMSO-d₆ on a 400 MHz and 300MHz Bruker spectrometer respectively with TMS as an internal standard. Mass spectra were obtained on SHIMADZU GC-MS Spectrometer. Column chromatography was carried out on silica gel 60-120 mesh. Elemental analysis were taken using an elementer analysiser model Vario EL III.

Synthesis of 4, 6-diacetylresorcinol (I)

To a mixture of freshly fused zinc chloride (100 g) and dry acetic anhydride (140 ml) in a conical flask, powdered resorcinol (100 g) was added with constant stirring. The mixture was gently heated on a flame to 142 °C for about 15 min. The viscous red solution was allowed to cool to room temperature and 1:1 hydrochloric acid (800 ml) was then added to the syrupy mass with constant stirring. After a few minutes, an orange red crystalline solid separated out. It was then filtered and dried in air. The dried sample was recrystallized from methanol to give colorless needles. Mp.177-179 °C (Lit¹⁹ 178-180). The yield of the product was found to be 70%.


Synthesis of bichalcones (IIa-h)

The synthesis of bichalcones was carried out by the method given in the literature²⁰. A homogeneous mixture of 4,6-diacetyl resorcinol **(I)** (3.88 g, 0.02 mol), substituted benzaldehyde (0.04 mol) in ethanol (80 ml) and aqueous potassium hydroxide (60%) were kept at room temperature for 24 h. The reaction

mixture was then treated with 1:1 hydrochloric acid and poured into ice with stirring. The solid thus obtained was filtered, washed with water and dried. It was then recrystallized from methanol and chloroform mixture (1:1).

Synthesis of 4,6-bis[2'- amino-3'-cyano-4'-(substituted phenyl)-6'-pyridyl] resorcinol(IIIa-h)

A mixture of compound **(IIa-h)** (0.01 mol) dissolved in 50 ml of dry ethanol, malononitrile (0.60 g, 0.02 mol) and ammonium acetate (6.18 g, 0.08 mol) was refluxed on water bath for 24 h. The formation of the product was monitored by TLC. The reaction mixture was then poured into crushed ice and kept overnight in a refrigerator. The solid thus obtained was filtered, washed with water and dried in air. The dried sample was recrystallized from ethanol. Finally the product was subjected to column chromatography for further purification using silica gel (60-120 mesh) and CHCl₃-MeOH mixture (3:1) as eluent.

Scheme-I

Ar = IIIa - phenyl IIIb - 4 - methoxyphenyl IIIc - 4- chlorophenyl IIId - 4- methylphenyl IIIe - 3, 4 - dimethoxyphenyl IIIf - 4 -N,N - dimethylphenyl IIIg - 3,4,5 - trimethoxyphenyl

IIIh - 3 - methylphenyl

Code	٨٣	Molecular	Molecular	M.P	Yield	OH	N-H	C≡N
No.	Ar	weight	Formula	°C	%	υ cm ⁻¹	$\upsilon \text{ cm}^{-1}$	υ cm ⁻¹
IIIa	phenyl	496	C ₃₀ H ₂₀ N ₆ O ₂	228	65	3351	3235	2209
IIIb	4 - methoxyphenyl	556	C ₃₂ H ₂₄ N ₆ O ₄	210	70	3343	3223	2208
IIIc	4- chlorophenyl	564	C ₃₀ H ₁₈ Cl ₂ N ₆ O ₂	188	63	3357	3198	2210
IIId	4- methylphenyl	524	$C_{32}H_{24}N_6O_2$	256	59	3347	3241	2212
IIIe	3, 4 -dimethoxyphenyl	616	C34H28N6O6	146	62	3342	3222	2207
IIIf	4-N,N-dimethylphenyl	582	$C_{34}H_{30}N_8O_2$	210	66	3354	3227	2213
IIIg	3, 4, 5-trimethoxyphenyl	676	C ₃₆ H ₃₂ N ₆ O ₈	278	54	3356	3242	2216
IIIh	3- methylphenyl	524	$C_{32}H_{24}N_6O_2$	194	50	3352	3235	2215

Table-1: IR and analytical data of Compounds IIIa-h

All the compounds gave satisfactory elemental analysis.

Table-2: Antimicrobial and antifeedant activities

Sample code	Conc.	Antibacterial activity					Antifungal activity		% of Antifeedant
		Diameter zone of inhibition (mm)							
		Psedomonas	Bacillus sp.	Streptococcus	Staphylococcus	E.coli	C. albicans	A. niger	activity
Std.	5μg	25	29	32	25	30	29	40	
IIIa	50µg	11	15	12	15	15	12	12	91.41
ma	100µg	14	16	14	16	17	15	18	
	250µg	18	19	21	19	21	18	18	
IIIb	50µg	10	-	11	-	-	12	12	92.76
IIIU	100µg	13	-	16	-	13	18	15	
	250µg	18	11	18	12	20	18	16	
IIIc	50µg	-	14	22	18	15	15	15	88.93
me	100µg	-	18	19	21	20	15	18	
	250µg	17	19	23	22	20	20	25	
IIId	50µg	12	14	-	13	15	15	15	92.48
mu	100µg	15	16	17	16	17	15	18	
	250µg	18	17	21	19	18	18	20	
IIIe	50µg	13	12	12	11	-	12	12	95.87
me	100µg	14	15	16	15	13	15	15	
	250µg	18	16	20	16	20	15	25	
IIIf	50µg	-	11	12	15	15	13	14	87.65
	100µg	14	16	14	16	17	15	16	
	250µg	18	19	21	19	21	16	19	
IIIg	50µg	12	13	14	13	-	-	12	96.79
	100µg	16	14	15	18	13	12	14	
	250µg	18	19	21	19	20	20	18	
IIIh	50µg	-	12	11	13	12	12	14	87.42
	100µg	14	16	13	16	15	15	16	
	250µg	19	19	21	17	18	17	18	

Solvent-DMSO

Results and Discussion

The physical constants and IR data were summarized in Table-1. The compound **IIIa** is considered as a representative compound. The IR spectrum of the compound shows bands at 3351 and 3235 cm⁻¹ due to -OH and $-NH_2$ groups respectively. Another band at 2209 cm⁻¹ is due the stretching frequency of $-C\equiv N$ group. In ¹HNMR spectrum, two singlets at δ 6.74 and 8.38 are assigned for C₂-H and C₅-H of resorcinol moiety. Another broad singlet at δ 6.69 is due to the NH₂ protons. In ¹³CNMR, the C=N carbon appears at δ 115.7 and ipso carbon at δ 140.4. The mass spectrum shows an intense peak at m/z 496 (41%) consistent with its molecular formula C₃₀H₂₀N₆O₂.

Antibacterial activity

All the synthesized compounds were screened for their *in vitro* antibacterial activity in various concentrations by Disc Diffusion method against *Psedomonas, Bacillus, Streptococcus, Staphylococcus* and *E.coli* using Chloromphenic(5μ g/disc) as standard antibiotic drug. Compound **IIIc** is found to possess appreciable activity against four of the above organisms and poor activity against *Psedomonas*. The other compounds are active at optimum concentrations (Table-2).

Antifungal activity

All the compounds were tested for their *in vitro* antifungal activity against *C. albicans and A. niger* using Co-trimazole $(25\mu g/disc)$ as standard drug. From the results, an appreciable activity has been found for compounds **IIIb**, **IIIc**, **IIId** and **IIIe** against *C. albicans and A. niger* at optimum concentrations (Table-2).

Antifeedant Activity

All the compounds synthesized were tested for their antifeedant activity by non-choice test method using 6 h prestarved fifth instar larvae of *Bombyx mori L*. Compounds **IIIb, IIIe** and **IIIg** exhibited highest antifeedant activity. The present study indicated that an increase of methoxy group in the phenyl moiety found to increase the antifeedant activity of aminocyanopyridine compounds (Table-2).

4, 6-Bis[2'- amino-3'-cyano-4'- phenyl-6'-pyridyl] resorcinol (IIIa)

¹H NMR (DMSO d₆): δ 6.74(1H, s, C₂-H), 8.38(1H, s, C₅-H), 8.10 (2H, s, C₅'), 6.69 (4H, s, -NH₂), 7.5-7.41 (10H, m, Ar-H), 11.19(2H, s, - OH). ¹³C NMR (DMSO d₆): δ 156.3(C₁, C₃), 105.4(C₂), 118.4(C₄, C₆), 127.2(C₅), 158.3(C₆'), 109.1(C₅'), 154.4(C₄'), 85.6(C₃'), 163.1(C₂'), 115.7 (C=N), 140.4(C_{1"}), 129.6(C_{2"}, C_{6"}), 132.2(C_{3"}, C_{5"}, C_{6"}).

4, 6-Bis[2'- amino-3'-cyano-4'(4''-methoxyphenyl)-6'-pyridyl] resorcinol (IIIb)

¹H NMR (DMSO d₆): δ 6.68 (1H, s, C₂-H), 8.27(1H, s, C₅-H), 7.91(2H, s, C₅'), 6.78 (4H, s, -NH₂), 7.73-7.55(8H, m, Ar-H), 11.25(2H, s, - OH), 3.83(3H, s, -OMe). ¹³C NMR (DMSO d₆): δ 155.8(C₁, C₃), 104.4(C₂), 116.8(C₄, C₆), 128.4(C₅), 157.7(C₆'), 111.6(C₅'), 153.4(C₄'), 85.6(C₃'), 162.6(C₂'), 114.2(C=N), 135.6(C₁"), 130.4(C_{2"}, C_{6"}), 120.3(C_{3"}, C_{5"}), 164.1(C_{4"}), 55.8(-OCH₃).

4, 6-Bis[2'- amino-3'-cyano-4'(4''-chlorophenyl)-6'pyridyl]resorcinol (IIIc)

¹H NMR (DMSO d_6) : δ 6.62 (1H, s, C₂-H), 8.42(1H, s, C₅-H), 7.83(2H, s, C₅), 6. 87 (4H, s, -NH₂), 7.63-7.22 (8H, m, Ar-H), 11.49(2H, s, - OH). ¹³C NMR

(DMSO d₆): δ 156.5(C₁, C₃), 104.9(C₂), 120.1(C₄, C₆), 127.2(C₅), 159.2(C₆), 110.7(C₅), 154.6(C₄), 88.2(C₃), 165.1(C₂), 113.2(C=N), 140.8(C_{1"}), 128.6(C_{2"}, C_{6"}), 129.5(C_{3"}, C_{5"}), 134.8(C_{4"}).

4, 6-Bis[2'- amino-3'-cyano-4'(4''-methylphenyl)-6'-pyridyl]resorcinol (IIId)

¹H NMR (DMSO d₆): δ 6.65(1H, s, C₂-H), 8.34(1H, s, C₅-H), 8.01(2H, s, C₅'), 6.83(4H, s, -NH₂), 7.65-7.34 (8H, m, Ar-H), 11.36(2H, s, - OH), 3.04(3H, s, - Me). ¹³C NMR (DMSO d₆) : δ 153.3(C₁, C₃), 104.9(C₂), 118.8(C₄, C₆), 126.2(C₅), 157.2(C₆'), 112.1(C₅'), 155.6 (C₄'), 87.6(C₃'), 164.1(C₂'), 115.7(C=N), 140.4(C_{1"}), 129.6(C_{2"}, C_{6"}), 129.5(C_{3"}, C_{5"}), 132.8(C_{4"}), 24.6 (-CH₃).

4, 6-Bis[2'- amino-3'-cyano-4'(3",4"-dimethoxy phenyl)-6'-pyridyl] resorcinol (IIIe)

¹H NMR (DMSO d₆): δ 6.71 (1H, s, C₂-H), 8.37(1H, s, C₅-H), 7.97(2H, s, C₅'), 6.89 (4H, s, -NH₂), 7.59-7.45(6H, m, Ar-H), 11.10(2H, s, - OH), 3.81(12H, s, - OMe). ¹³C NMR (DMSO d₆): δ 156.2(C₁, C₃), 104.4(C₂), 116.2(C₄, C₆), 128.6(C₅), 158.7(C₆'), 111.4(C₅'), 154.0(C₄'), 85.6(C₃'), 163.2(C₂'), 114.5 (C=N), 135.6(C_{1''}), 113.4(C_{2''}), 152.3(C_{3''}, C_{4''}), 117.1(C_{5''}), 122.4(C_{6''}), 56.1(-OCH₃).

4, 6-Bis[2'- amino-3'-cyano-4'(4''-N,N-dimethyl phenyl)-6'-pyridyl] resorcinol (IIIf)

¹H NMR (DMSO d₆): δ 6.81 (1H, s, C₂-H), 8.29(1H, s, C₅-H), 8.12 (2H, s, C_{5'}), 6.74 (4H, s, -NH₂), 7.76-7.55(6H, m, Ar-H), 11.21(2H, s, - OH), 3.01 (12H, s, - Me). ¹³C NMR (DMSO d₆): δ 157.3(C₁, C₃), 105.4(C₂), 118.4(C₄, C₆), 127.2(C₅), 158.3(C_{6'}), 109.1(C_{5'}), 154.4(C_{4'}), 85.6(C_{3'}), 163.1(C_{2'}), 115.7 (C=N), 125.5(C_{1"}), 128.3(C_{2"}, C_{6"}), 113.2(C_{3"}, C_{5"}) 155.2 (C_{4"}), 44.6 (CH₃).

4, 6-Bis[2'- amino-3'-cyano-4'(3'',4'',5''-trimethoxy phenyl)-6'-pyridyl] resorcinol (IIIg)

¹H NMR(DMSO d₆) : δ 6.61 (1H, s, C₂-H), 8.29(1H, s, C₅-H), 8.07(2H, s, C_{5'}), 6.79 (4H, s, -NH₂), 7.69-7.52(4H, m, Ar-H), 11.28(2H, s, - OH), 3.88(18H, s, - OMe). ¹³C NMR (DMSO d₆): δ 154.8 (C₁, C₃), 105.1(C₂), 116.8(C₄, C₆), 128.4(C₅), 157.7(C₆), 112.6(C_{5'}), 152.1(C_{4'}), 85.6(C_{3'}), 162.6(C_{2'}), 114.2 (C=N), 135.6(C_{1''}), 130.4(C_{2''}, C_{6''}), 153.5(C_{3''}, C_{5''}), 139.1(C_{4''}), 56.4(C_{3''}, C_{5''} -OCH₃) 60.2(C_{4''} -OCH₃).

4, 6-Bis[2'- amino-3'-cyano-4'(3''-methylphenyl)-6'pyridyl] resorcinol (IIIh)

¹H NMR (DMSO d₆): δ 6.54(1H, s, C₂-H), 8.24(1H, s, C₅-H), 8.12(2H, s, C_{5'}), 6.79(4H, s, -NH₂), 7.61-7.43 (8H, m, Ar-H), 11.19(2H, s, - OH), 3.21(3H, s, - Me). ¹³C NMR (DMSO d₆) : δ 155.7(C₁, C₃), 106.3(C₂), 117.9(C₄,C₆), 126.8(C₅), 157.8(C_{6'}), 109.9(C_{5'}), 154.4(C_{4'}), 85.9(C_{3'}), 163.7(C_{2'}), 116.1(C=N), 137.4($C_{1''}$), 129.0($C_{2''}$), 124.6 ($C_{6''}$), 138.2($C_{3''}$), 129.7($C_{5''}$), 129.1($C_{6''}$), 40.4(CH₃).

Conclusion

Synthesis of 4, 6–bis[2'-amino-3'-cyano-4'-(substituted phenyl)-6'-pyridyl] resorcinol derivatives **IIIa-h** were achieved by adopting Knoevenagel and Michael addition reactions. All the compounds were found to possess appreciable activity against the bacteria and fungi at optimum concentrations. The antifeedant activity of the synthesized compounds **IIIb**, **IIIe** and **IIIg** has found to possess very high activity.

References

- Temple C. J., Rener G.A., Waud W. R. and Noker P. E., J. Med. Chem. 1992, 35, 3686.
- Budgett C. O. and Woodward C. F., J. Am. Chem. Soc. 1947, 69, 2907.
- 3. Mercier J., Gavend M., Vanluv V. and Dessaigne S., Congr UniontherInt [*CR*] 1963, 8, 361.
- 4. Dorner G. and Fischer F. W., Arezenmittel Forch 1961, 11, 110.
- Boger D. L.and Nakahara. S., J. Org. Chem. 1991, 56, 880.
- (a)Boger D. L. and Kasper A. M., J. Am. Chem. Soc. 1989, 111, 1517. (b) Zhang T. Y., Stout J. R., Keay J. G., Seriven E. F. V., Toomey J. E. and Goe G. L., Tetrahedron 1995, 51,13177.
- 7. Konda S. G., Khedkar V. T. and Dawane B. S., J. Chem. Pharm. Res.2010, 2, 187.
- 8. Mungra D. C., Patel M. P. and Patel R. G., Arkivoc 2009, 64.
- Vyas D. H., Tala S. D., Akbari J. D., Dhaduk M. F.,Joshi K.A. and Joshi H. S., Ind. J. Chem. 2009, 48B, 833.
- Gholap A. R., Toti K. S., Shirazi F., Kumari R., Bhat M. K., Deshpande M. V. and Srinivasan K. V., Bioorg. Med. Chem. 2007, 15, 6705.
- 11. Bekhit A. A. and Baraka A. M., Eur. J. Med. Chem. 2005, 40, 1405.
- Murata T., Shimada M., Sakakibara S., Yoshino T., Kadono H., Masuda T., Shimazaki M., Shintani, T. Fuchikami K., Sakai K., Inbe H., Takeshita K., Niki T., Umeda M., Bacon K. B., Ziegelbauer K. B. and Lowinger T. B., Bioorg. Med. Chem. Let.2003, 13, 913.
- Abou. El. Fotooh., Hammam G., Osma. I. Abd El
 Salam., Ashraf., Mohammed. M.,Nagla R. and Abdel Hafez.,IndianJ.Chem., Sep 2005, 44B,1887.
- 14. Shi F., Tu S. J., Fang F., and Li T., J. Arkivoc 2005, 137.
- 15. Aliye Altundas., Selcuk Ayvaz . and Elif Logoglu., Med Chem Res 2011, 20, 1–8.

Acknowledgement

The authors are thankful to the Principal and the Management of Jamal Mohamed College for providing laboratory facilities. One of them (MP) is grateful to UGC New Delhi for financial assistance. The authors are highly thankful to Dr. Joseph Selvin, Associate professor of Microbiology, Bharathidasan University, Tiruchirappalli for his suggestions and timely help.

- Davoodnia A., Heravi M. M., Safavi-Rad Z. and Tavakoli-Hoseini N., Syn. Commun. 2010, 40, 2588.
- 17. Tavakoli-Hoseini N. and Davoodnia A., Asian J. Chem. 2010, 22, 7197.
- Ragini Gupta., Anshu Jain, Meenakshi Jain. and Rahul Joshi., Bull. Korean Chem. Soc., 2010, 31, 3180-3182
- Anjanayulu. A. S. R., Prasd. A.V. R. R.and Reddy. D. S., Curr. Sci., 1979, 48,300.
- Venkataraman. V. R. and Nagarajan. S. J., Indian Chemical Soc., 1985, 62,787.
